152 research outputs found

    Genomic Analysis and Prediction within a US Public Collaborative Winter Wheat Regional Testing Nursery

    Get PDF
    The development of inexpensive, whole-genome profiling enables a transition to allele-based breeding using genomic prediction models. These models consider alleles shared between lines to predict phenotypes and select new lines based on estimated breeding values. This approach can leverage highly unbalanced datasets that are common to breeding programs. The Southern Regional Performance Nursery (SRPN) is a public nursery established by the USDA–ARS in 1931 to characterize performance and quality of near-release wheat (Triticum aestivum L.) varieties from breeding programs in the US Central Plains. New entries are submitted annually and can be re-entered only once. The trial is grown at \u3e30 locations each year and lines are evaluated for grain yield, disease resistance, and agronomic traits. Overall genetic gain is measured across years by including common check cultivars for comparison. We have generated whole-genome profiles via genotyping-bysequencing (GBS) for 939 SPRN entries dating back to 1992 to explore the potential use of the nursery as a genomic selection (GS) training population (TP). The GS prediction models across years (average r = 0.33) outperformed year-to-year phenotypic correlation for yield (r = 0.27) for a majority of the years evaluated, suggesting that genomic selection has the potential to outperform low heritability selection on yield in these highly variable environments. We also examined the predictability of programs using both program-specific and whole-set TPs. Generally, the predictability of a program was similar with both approaches. These results suggest that wheat breeding programs can collaboratively leverage the immense datasets that are generated from regional testing networks

    Wheat quality improvement at CIMMYT and the use of genomic selection on it

    Get PDF
    Citation: Guzman, C., Pena, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., . . . Battenfield, S. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied and Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004The International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries. The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought and heat), and desirable quality. The Wheat Chemistry and Quality Laboratory has been continuously evolving to be able to analyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse quality traits on time to the breeders formaking selections for advancement in the breeding pipeline. The participation of wheat quality analysis/selection is carried out in two stages of the breeding process: evaluation of the parental lines for new crosses and advanced lines in preliminary and elite yield trials. Thousands of lines are analyzed which requires a big investment in resources. Genomic selection has been proposed to assist in selecting for quality and other traits in breeding programs. Genomic selection can predict quantitative traits and is applicable to multiple quantitative traits in a breeding pipeline by attaining historical phenotypes and adding high-density genotypic information. Due to advances in sequencing technology, genome-wide single nucleotide polymorphism markers are available through genotyping-by-sequencing at a cost conducive to application for genomic selection. At CIMMYT, genomic selection has been applied to predict all of the processing and end-use quality traits regularly tested in the spring wheat breeding program. These traits have variable levels of prediction accuracy, however, they demonstrated that most expensive traits, dough rheology and baking final product, can be predicted with a high degree of confidence. Currently it is being explored how to combine both phenotypic and genomic selection to make more efficient the genetic improvement for quality traits at CIMMYT spring wheat breeding program. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

    Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    Get PDF
    Citation: Rutkoski, J., . . . Singh, R. (2016). Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3-Genes Genomes Genetics, 6(9), 2799-2808. https://doi.org/10.1534/g3.116.032888Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots

    Multivariate Genomic Selection and Potential of Rapid Indirect Selection with Speed Breeding in Spring Wheat

    Get PDF
    Genomic selection (GS) can be effective in breeding for quantitative traits, such as yield, by reducing the selection cycle duration. Speed breeding (SB) uses extended photoperiod and temperature control to enable rapid generation advancement. Together, GS and SB can synergistically reduce the breeding cycle by quickly producing recombinant inbred lines (RILs) and enabling indirect phenotypic selection to improve for key traits, such as height and flowering time, prior to field trials. In addition, traits measured under SB (SB traits) correlated with field-based yield could improve yield prediction in multivariate GS. A 193-line spring wheat (Triticum aestivum L.) training population (TP), tested for grain yield in the field in multiple environments, was used to predict grain yield of a 350-line selection candidate (SC) population, across multiple environments. Four SB traits measured on the TP and SC populations were used to derive principal components, which were incorporated into multivariate GS models. Predictive ability was significantly increased by multivariate GS, in some cases being twice as high as univariate GS. Based on these results, an efficient breeding strategy is proposed combining SB and multivariate GS using yield-correlated SB traits for yield prediction. The potential for early indirect SB phenotypic selection for targeted population improvement prior to trials was also investigated. Plant height and flowering time showed strong relative predicted efficiency to indirect selection, in some cases as high as direct field selection. The higher selection intensity and rate of generation turnover under SB may enable a greater rate of genetic gain than direct field phenotyping

    Technological perspectives for plant breeding

    Get PDF
    New Breeding Technologies? For some, both inside and outside the scientific community, this phrase is synonymous with gene editing—or used exclusively to describe the application of CRISPR/Cas9 to plant improvement. Much as, historically, the term ‘biotech crops’ has been hijacked to only mean crop plants produced using genetic engineering. However, ‘breeding technologies’ refers not only to genetic modification using techniques of molecular biology, but also to a vast number of other techniques developed for breeding via the application of scientific advancements emanating from disciplines such as computer science, plant biology, statistics, automation, robotics and artificial intelligence. This concept is not new: in reality, technology has been a feature of crop improvement since early in the last century..

    Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries

    Get PDF
    Citation: Haghighattalab, A., Perez, L. G., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., . . . Poland, J. (2016). Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods, 12, 15. https://doi.org/10.1186/s13007-016-0134-6Background: Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-based high-throughput phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot research, while enabling the rapid assessment of tens-of-thousands of field plots. The objective of this study was to complete a baseline assessment of the utility of UAS in assessment field trials as commonly implemented in wheat breeding programs. We developed a semi-automated image-processing pipeline to extract plot level data from UAS imagery. The image dataset was processed using a photogrammetric pipeline based on image orientation and radiometric calibration to produce orthomosaic images. We also examined the relationships between vegetation indices (VIs) extracted from high spatial resolution multispectral imagery collected with two different UAS systems (eBee Ag carrying MultiSpec 4C camera, and IRIS+ quadcopter carrying modified NIR Canon S100) and ground truth spectral data from hand-held spectroradiometer. Results: We found good correlation between the VIs obtained from UAS platforms and ground-truth measurements and observed high broad-sense heritability for VIs. We determined radiometric calibration methods developed for satellite imagery significantly improved the precision of VIs from the UAS. We observed VIs extracted from calibrated images of Canon S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the MultiSpec 4C camera (r = 0.64). Their correlation to spectroradiometer readings was as high as or higher than repeated measurements with the spectroradiometer per se. Conclusion: The approaches described here for UAS imaging and extraction of proximal sensing data enable collection of HTP measurements on the scale and with the precision needed for powerful selection tools in plant breeding. Low-cost UAS platforms have great potential for use as a selection tool in plant breeding programs. In the scope of tools development, the pipeline developed in this study can be effectively employed for other UAS and also other crops planted in breeding nurseries

    Scanning and filling : ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data

    Get PDF
    Genotyping-by-sequencing (GBS) represents a highly cost-effective high-throughput genotyping approach. By nature, however, GBS is subject to generating sizeable amounts of missing data and these will need to be imputed for many downstream analyses. The extent to which such missing data can be tolerated in calling SNPs has not been explored widely. In this work, we first explore the use of imputation to fill in missing genotypes in GBS datasets. Importantly, we use whole genome resequencing data to assess the accuracy of the imputed data. Using a panel of 301 soybean accessions, we show that over 62,000 SNPs could be called when tolerating up to 80% missing data, a five-fold increase over the number called when tolerating up to 20% missing data. At all levels of missing data examined (between 20% and 80%), the resulting SNP datasets were of uniformly high accuracy (96– 98%). We then used imputation to combine complementary SNP datasets derived from GBS and a SNP array (SoySNP50K). We thus produced an enhanced dataset of >100,000 SNPs and the genotypes at the previously untyped loci were again imputed with a high level of accuracy (95%). Of the >4,000,000 SNPs identified through resequencing 23 accessions (among the 301 used in the GBS analysis), 1.4 million tag SNPs were used as a reference to impute this large set of SNPs on the entire panel of 301 accessions. These previously untyped loci could be imputed with around 90% accuracy. Finally, we used the 100K SNP dataset (GBS + SoySNP50K) to perform a GWAS on seed oil content within this collection of soybean accessions. Both the number of significant marker-trait associations and the peak significance levels were improved considerably using this enhanced catalog of SNPs relative to a smaller catalog resulting from GBS alone at 20% missing data. Our results demonstrate that imputation can be used to fill in both missing genotypes and untyped loci with very high accuracy and that this leads to more powerful genetic analyses

    CGIAR modeling approaches for resource-constrained scenarios: I. Accelerating crop breeding for a changing climate.

    Get PDF
    Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains 'to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?'. Here, we address this question by critically reviewing how model-based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better-targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.Online Version of Record before inclusion in an issue
    • 

    corecore